CS103 Handout 29
Fall 2013 November 28, 2013

Extra Credit: Practice CS103 Final Exam

This practice exam is worth 5 extra credit points. We will not give points based on whether or
not your answers are correct, but rather on whether or not you have made a good-faith effort to
answer all the questions. On the Honor Code, we assume that any answers you submit for these
problems represent a good, honest effort on your part. We will not release solutions to this prac-
tice exam. If you have any questions about it, feel free to stop by office hours, email the staff list,
or stop by one of the final exam review sessions we'll be holding. It is perfectly fine to work on
these problems in a group or to ask questions about them at the review session.

Normally, I would leave extra space between problems so that you would have room to write out
your answers, but to save paper I have tried to minimize the amount of blank space in this hand-
out. You do not need to bring extra scratch paper to the final exam, but I would suggest doing so
in case you want to try out various solutions to the problems. You will have three hours to com-
plete the final exam.

This practice exam is probably a bit larger than the actual exam will be, so don't worry if you
take more than three hours to finish it. We will release two actual exams from previous quarters
early next week so that you can get a sense for what the final exam might be like.

Question Points Grader
(1) Discrete Mathematics (25) /25
(2) Regular Languages (45) /45
(3) Context-Free Languages (15) /15
(4) R and RE Languages (55) /55
(5) P and NP Languages (40) /40
(180) /180

(Note that these points are to give a relative sense of the weights
on the final exam and have no bearing on extra credit points)

Optional, but due just after you take the final exam.

2/7

Problem 1: Discrete Mathematics (25 Points Total)

In Problem Set Three, you explored graphs and complement graphs. This problem explores bi-
nary relations and complementary binary relations.

If R is a binary relation over a set 4, the complement relation R¢ is the binary relation over 4 de-
fined as follows:

Vx € 4. Yy € A. (xRy < —(xRy))

In other words, xRy is true iff xRy is false. For example, the complement of the = relation is the
relation, and the complement of the < relation is the > relation.

(i) Complementary Relations, Part One (15 Points)

Prove or disprove: if R is a binary relation over a nonempty set A4, then at least one of R or R° is a
partial order.

(ii) Complementary Relations, Part Two (10 Points)

Prove or disprove: if R is a binary relation over a nonempty set 4, then at most one of R or R°is a
partial order.

3/7

Problem 2: Regular Languages (45 Points Total)

Consider the following language over X = { O, E }:

PARITY = { w | w has even length and has the form E" or
w has odd length and has the form 0" }

For example, EE € PARITY, 00000 € PARITY, EEEE € PARITY, and ¢ € PARITY, but
EEE & PARITY,EO & PARITY, and 0000 & PARITY.

(i) Regular Expressions (10 Points)
Write a regular expression for PARITY.

(ii) Finite Automata (10 Points)
Design a DFA that accepts PARITY.

(iii) NFAs (10 Points)

Use the subset construction to convert this NFA into an equivalent DFA:

(iv) Nonregular Languages (15 Points)
Consider the following language over the alphabet £ = {0, 1}:
TWICE = {ww|w € X* }

For example, 0101 € TWICE, 001001 € TWICE, 1111 € TWICE, and ¢ € TWICE, but
01 ¢ TWICE.

Prove that TWICE is not regular.

Problem 3: Context-Free Languages

4/17

(15 Points)

On Problem Set 5 and 6, you explored the language ADD over the alphabet { 1, +, = }, which

was defined as follows:

ADD = { 1"+1"=1"" |m,n € N }

Consider the following generalization of ADD, which we will call MULTIADD, which consists
of all strings describing unary encodings of two sums that equal one another. For example:

1+3=4
4=1+3
2+2=1+3
2+0+2+0=0+4+0
0=0

would be encoded as
would be encoded as
would be encoded as
would be encoded as

would be encoded as

1+111=1111
1111=1+111
11+11=1+111
11+4+411+=+1111+

Notice that there can be any number of summands on each side of the =, but there should be ex-
actly one = in the string; thus 1=1=1 € MULTIADD.

Write a CFG that generates MULTIADD. Show a parse tree for 1+1=11+ and +=+.

5/7

Problem 4: R and RE Languages (55 Points Total)

(i) Same Difference? (30 Points)
Prove or disprove: If L; € Rand L, € R, then L, — L, € R.
Prove or disprove: If L; € RE and L, € RE, then L, — L, € RE.

(ii) a*b is Undecidable? (10 Points)

All regular languages are decidable, but below is a purported proof that the regular language de-
scribed by the regular expression a*b is undecidable:

Theorem: a*b is undecidable.

Proof: By contradiction; assume a*b is decidable. Let D be a decider for it. Now,
consider what happens when we run D on a string of infinitely many a's followed
by a b and a string of infinitely many a's. Let's call this first string x and the sec-
ond string y. Since D is a decider, it halts on all inputs, and therefore cannot run
for an infinitely long time. Therefore, D must halt before reading the last character
of x and the last character of y. Because x and y are the same except for their last
character, we see that D must have the same behavior when run on x and when
run on y. If D accepts x, then D also accepts y, but y is not in the language a*b.
Otherwise, D rejects x, but x is in the language a*b. Both cases contradict the fact
that D is a decider for a*b. We have reached a contradiction, so our assumption
must have been wrong. Thus a*b is undecidable. m

What's wrong with this proof?

(iii) Accept Most of the Strings! (15 Points)

Let Avost = { (M, n) | Mis a TM, n € N, and M accepts all strings of length at least n }. Prove
that Amosr is neither RE nor co-RE. As a hint, you may want to use a mapping reduction involv-
ing the language AarL from Problem Set 8. As a reminder:

A= { (M) |MisaTM and (M) =X* }

6/7

Problem S: P and NP (40 points total)

(i) Closure under Complement (20 Points)

Prove that P is closed under complementation. (Hint: Show how to turn a polynomial-time de-
cider for a language L into a polynomial-time decider for the language L)

While we know that P is closed under complementation, it is unknown whether NP is closed un-
der complementation. The class of problems that are the complements of problems in NP is an
interesting one, and it is so important that we give it the name co-NP. Formally, co-NP is the set
of languages L such that L € NP. For example, the language

SAT = { (o) | ¢ is a satisfiable propositional logic formula }
is known to be in NP, while its complement
SAT = { (¢) | ¢ is an unsatisfiable propositional logic formula }
is contained in co-NP.

Just as the relation between P and NP is unknown, the relation between NP and co-NP is also
unknown and is a major open problem in complexity theory. However, we do know of one inter-
esting result about how P, NP, and co-NP are connected.

(ii) NP and co-NP (10 Points)
Prove that if NP # co-NP, then P # NP.

7/7
(iii) What Do We Know? (10 Points)
Below are ten statements, some of which are definitely known to be true, some of which are defi-
nitely known to be false, and some of which aren't known to be true or false. For each of these

statements, write a T if the statement is definitely true, an F if the statement definitely false, and
a ? if neither of these are the case.

For any language L, if L € P, then L € NP.

For any language L, if L € NP, then L € P.

For any languages L and L', if L is NP-complete and L' <, L,
then L' € P.

For any languages L and L', if L is NP-complete and L' < L,
then L' € NP.

For any languages L and L', if L is NP-complete and L' <, L,

then L' € NPC.

If 3SAT is decidable in time O(n'?), then P = NP.

If 3SAT is not decidable in time O(n'°), then P # NP.

There exists an NP language that is not in R.

There exists an NP-complete language that is not in R.

There exists an RE-complete language that is in NP.

